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Breast cancer is one of the major health problems that leads to early mortality in women. To aid the radiologists,
computer aided diagnosis provides a second opinion for the detection and classification of breast cancer. In this
paper, two texture feature extraction methods using Empirical Mode Decomposition (EMD) have been proposed to
classify the masses in mammogram images into benign or malignant. The first feature extraction method is based
on Bi-dimensional Empirical Mode Decomposition (BEMD). On performing BEMD on Region of Interest (ROI) of
mammogram image, the ROI is decomposed into a set of different frequency components called Bi-dimensional
Intrinsic Mode Functions (BIMFs). Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run Length Matrix
(GLRM) features are extracted from these BIMFs and are given as input to the classifier for classification into
benign or malignant. Due to the mode mixing problem that exists in BEMD, BIMFs obtained from BEMD are less
orthogonal to each other. To overcome this drawback, the second feature extraction method called Modified Bi-
dimensional Empirical Mode Decomposition (MBEMD) is proposed. The BIMFs are extracted by employing the
proposed MBEMD on mammogram ROI. Features are extracted in a similar way as BEMD method. Support Vector
Machine (SVM) and Linear Discriminant Analysis (LDA) classifiers are used for the classification of mammogram
mass. The classification accuracy of 88.8%, 96.2% and Area Under the Curve (AUC) of Receiver Operating
Characteristics (ROC) of 0.9, 0.96 are obtained with SVM classifier for BEMD, proposed MBEMD based features
respectively. The results show that the proposed method yields consistent performance when applied across

different databases.

1. Introduction

Breast cancer is one of the major health problems that leads to early
mortality in women, especially those between 40 and 55 years of age all
over the world. In India, breast cancer accounts for 14% of all cancers in
women and 1 in 28 women is likely to get affected by this disease during
her lifetime [1]. According to global cancer report (GLOBOCAN 2018),
11.6% of new cases are the incidence of breast cancer with mortality rate
of 6.6% of all cancer deaths that occurred world wide during 2018 [2].

Early detection of breast cancer in screening mammography is a
challenging task because the appearances of breast cancer are unstable in
the early stages. There are chances for the radiologists to misinterpret a
normal region in the mammogram image as a suspicious lesion or to miss
the abnormality in the image. To aid the radiologists in analyzing
mammogram images, two automated systems have been developed: (i)
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Computer-Aided Detection system to detect and segment the lesions in
mammograms. (ii) Computer-Aided Diagnosis (CADx) system to classify
the detected lesions into benign or malignant [3]. The main objective of
our research work is to develop an efficient feature extraction method to
classify the masses in mammograms into benign or malignant.

In recent years, many feature extraction methods based on gray level,
shape and texture features have been proposed for the classification of
masses in mammogram images. Gray level features are first-order sta-
tistics such as mean, standard deviation and variance that are used to
measure the intensity variation in mammogram images for discrimina-
tion between benign and malignant [4-6]. Feature extraction using shape
features are based on the extraction of spatial arrangements of pixels such
as area, perimeter, compactness and circularity to distinguish between
mass and normal breast tissue [7-10]. Texture is an important charac-
teristic for the classification of masses in mammogram images because it
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describes the spatial variation of pixel intensities in an image. It also
determines smoothness or coarseness of image features. The techniques
used for texture feature extraction from the image are structural, statis-
tical and transform methods. The structural methods represent texture by
well-defined primitives that provide a good symbolic description of the
image [11,12]. The statistical approaches use the properties that govern
the distribution and relationships of gray levels in the image. The most
commonly used statistical methods are computed from GLCM and
GLRLM [13-15]. The transform methods are based on the processing of
the image in the transform domain. Texture features based on Gabor
wavelets and Contourlet transform [12,16,17] are most widely used to
extract texture features at different orientations.

After the features are extracted from the mammogram mass RO, the
classification of mass into benign or malignant is performed using clas-
sifiers. Among the classifiers, the most popular classifiers used by the
researchers for mammogram mass classification are LDA, K-nearest
neighbors, decision tree and SVM. Texture features based on Gabor filters
was proposed by S. Khan et al. [12]. For classification SVM was imple-
mented and an average accuracy of 93.95% was achieved. R. Rabidas
et al. [11] proposed a texture feature extraction method based on
neighborhood structural similarity. For classification, LDA was used and
achieved an accuracy of 94.57%. In the method presented by X. Liu et al.
[13], geometrical and textural features are incorporated with SVM clas-
sifier for mammogram mass classification. Accuracy of 94% was attained
with this method. loan B et al. [16] extracted directional features using
Gabor wavelets and proximal SVM was used to classify the data. A.K.
Mohanty et al. [15] proposed a method for texture-based feature
extraction and decision tree models were used for classification. The
accuracy of 96.7% was achieved by this method. The performance of
SVM and LDA is proved favorable for mass classification in the literature
[12,13,16,17]. Hence, SVM and LDA classifiers have been implemented
in this proposed feature extraction method for mammogram mass
classification.

The main issues with the existing feature extraction methods are: (i)
The methods that use gray level features achieved low accuracy in the
classification of masses. (ii) Shape features are not sufficient enough to
classify the mass into benign or malignant. It is only used to distinguish
the mass region from normal breast tissue. (iii) Most of the texture
feature extraction techniques are based on transform methods and are
non-adaptive in nature because it uses filtering scheme or basis functions.
The existing feature extraction methods resulted in a large feature set and
hence dimensionality reduction of the feature set or feature selection
must be performed which adds complexity to the diagnosis system.

The proposed method addresses the above problems by incorporating
a multiresolution decomposition technique called BEMD for texture
feature extraction. BEMD does not use any basis functions, hence differs
from Fourier transform and wavelet transform. BEMD is a decomposition
method which is used to decompose the image into a set of Bi-
dimensional Intrinsic Mode Functions (BIMFs) or modes. BEMD has
been used in texture analysis because the extracted BIMFs are the strong
characteristics of the texture features. J.C Nunes et al. [18] has imple-
mented BEMD for texture extraction and it was shown that none of the
methods except BEMD performs best for all types of images for extracting
texture features. BEMD has been employed for the classification of
mammograms into normal and abnormal images [19]. Even though
BEMD is a useful decomposition tool for texture analysis, it has the
problem of mode mixing where a single IMF consists of signals of
different scales or the mode will get mixed in another IMF.

To overcome the problem of mode mixing that exists in BEMD, a
decomposition algorithm called MBEMD has been proposed in this
method. The performance of BEMD and the proposed MBEMD is
compared in terms of the Orthogonality Index (OI), Mean Square Error
(MSE) and Peak Signal to Noise Ratio (PSNR). Both BEMD and the pro-
posed MBEMD has been implemented in the proposed feature extraction
method for classifying the masses into benign or malignant and the re-
sults are compared.
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2. Materials and methods

The main objective of the proposed method is to classify the masses in
mammograms into benign or malignant using two feature extraction
methods: BEMD and the proposed MBEMD. Mammogram images for the
proposed work have been collected from Mammographic Image Analysis
Society (MIAS) Database, Digital Database for Screening Mammography
(DDSM) which are the publicly available database. The images are also
collected from the Department of Radiology, Mahatma Gandhi Memorial
(MGM) Hospital, affiliated to KAPV Government Medical College, Tir-
uchirappalli, India. This local database is mentioned as MGM hospital
images throughout this paper. The proposed work has been tested in
MATLAB 8.0.0 environment on a computer with Intel Core i3 processor
with 2.10 GHz CPU and 4 GB RAM.

MIAS database consists of 322 images of Medio Lateral-Oblique
(MLO) view taken from 161 patients. The images were digitized to
200-pm pixel edge and resized to 1024 x 1024 [20]. Out of 322 images in
MIAS database, 53 images with the benign type of masses and 39 images
with malignant masses are taken for this work.

DDSM database consists of images taken from 2500 patients
approximately. From every patient, two images, each from the left breast
and right breast of both craniocaudal (CC) view and MLO view are taken.
Out of these images, 60 images with benign masses and 60 images with
malignant masses are taken for this work. Lumisys scanner at 50 mm
pixel size and Howtek scanner at 43.5 mm pixel size are used to digitize
the images that have been taken for this work. The pixel resolution of
these images is 12 bits. The ground truth information about the abnormal
areas in the images are given in the ‘.ics’ file [21].

MGM hospital images consist of 176 images of both CC view and MLO
view. The images are digitized to 100-um pixel edge and the resulting
digital images size are 1954 x 2410. Out of these images, 59 images with
benign masses and 29 images with malignant masses are taken for this
work. The block diagram of the proposed method is shown in Fig. 1. The
proposed method feature extraction method consists of the following
steps: (i) Pre-processing to enhance the image. (ii) ROI Extraction to crop
the mass region. (iii) Decomposition of ROI based on BEMD and the
proposed MBEMD into BIMFs or modes. (iv) Extraction of GLCM, GLRLM
features from these BIMFs. (v) Classification of ROI into benign or ma-
lignant. For classification of ROI, SVM and LDA classifiers have been
employed in this work. Finally, the results obtained by BEMD, MBEMD
based feature extraction are compared in terms of accuracy and AUC of
ROC.

2.1. Empirical mode decomposition (EMD) for feature extraction

EMD is a multiresolution decomposition technique that decomposes
the signal into a set of different frequency components called Intrinsic
Mode Functions (IMFs) and a residue. The decomposition method to
obtain IMFs is called sifting process. EMD does not use any basis func-
tions and it is suitable for non-linear, non-stationary data analysis, EMD
can be considered as filtering technique [22].

2.1.1. Bi-dimensional empirical mode decomposition: an overview

The two-dimensional (2-D) extension of EMD is called BEMD which
can be used for 2D signals or images. BEMD is a decomposition algorithm
which is used to decompose the image into a set of BIMFs. The decom-
position of an image into its BIMFs is called sifting process.

For a function to be an IMF, the following two constraints must be
satisfied. (i) The number of zero-crossing local extrema (maxima and
minima) must be equal or differ by one at most. (ii) The mean value of the
envelope defined by the extrema must be zero. The sifting process [18] to
decompose the image f(m, n) into its BIMFs with m rows, n columns in the
image, is explained as follows: To extract first IMF from the image, the
envelope of local maxima and minima of the image f(m,n) is determined
and its mean E; (m,n) is obtained. The function g; (m,n) is given by:
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Fig. 1. Block diagram of the Proposed Feature Extraction method.

gl(mvn) :f(m7n) - El (m,n) (1)

If g1(m,n) satisfies the above said constraints of IMF, then it is
designated as first IMF defined by BIMF, (m,n). If not, then it is consid-
ered as data and the sifting process is continued until an IMF is
encountered. After determining first IMF, the first residue Ry (m,n) is
determined by:

R (m,n) =f(m,n) — BIMF,(m,n) 2

The residue is considered as new data and the sifting process is
continued until a new IMF BIMF,(m,n) is obtained. The second residue
R;(m,n) can be determined by:

Ry(m,n) =R, (m,n) — BIMF,(m,n) 3
The subsequent residues are determined by:

Ri(m,n) =R;_,(m,n) — BIMF,(m,n) (@)

where k is the IMF number.

The sifting process is continued until no more BIMFs are encountered.
This happens when Ry(m,n) becomes a constant, monotonic function.
The image is reconstructed after summing up all the N decomposed
BIMFs and the residue Ry (m,n) which is given by:

N
f(m,n)= ZBIMFk(m, n) + Ry(m,n) 5)

k=1

2.1.2. Bi-dimensional Ensemble Empirical Mode Decomposition (BEEMD):
an overview

Even though BEMD is a useful decomposition tool for texture analysis,
it has the following problems: (a) BEMD has the problem of mode mixing.
BEMD is a technique to extract modes that can be identified by the sifting
process. The BEMD cannot separate the mode in an IMF when a mode
does not have even distribution of maxima and minima by the sifting
process. (b) Hence a single IMF consists of signals of different scales or
the mode will get mixed in another IMF. Thus, BIMFs obtained using
BEMD will not be orthogonal to each other due to mode mixing, which is
the main drawback in texture analysis.

To overcome the above-mentioned problems of BEMD, a decompo-
sition algorithm called Bi-dimensional Ensemble Empirical Mode
Decomposition algorithm was developed which is the 2-D extension of
EEMD [23]. The sifting process in BEEMD algorithm is explained as
follows:

The I realizations of zero-mean white Gaussian noise is added to the
input image f(m,n) which is given by:

fi(mvn) :f(m,n) +ﬂwi(m,n) ©)

where w'(m,n) is the zero-mean white gaussian noise of different re-
alizations from i = 1,2, ....I and f is the standard deviation of the noise.
For each i, fi(m,n) is decomposed into its BIMFs using BEMD to get the
modes, BIMF};(m, n) where k = 1,2...K are the mode numbers. The k™
mode of f(m,n) is obtained by taking the average of BIMFi(m,n) over I
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realizations. It is given by:

BIMF,(m, n) ZBIMF' m, n) )

The residue is obtained for each of the realizations of the noise as
follows:
Ry (m, n)

=R._,(m,n) — BIMF}(m,n) (8)

In BEEMD, the decomposition is incomplete because, each fi(m, n) is
decomposed into its BIMFs independent of other realizations of the noise.
This leads to reconstruction error since the reconstructed image is ob-
tained by adding all the decomposed BIMFs.

2.1.3. The proposed modified Bi-dimensional empirical mode decomposition

Even though the mode mixing problem is overcome in BEEMD, the
decomposition in BEEMD is incomplete with high reconstruction error
caused by adding different realizations of noise to the signal.

To overcome such incomplete decomposition problem of BEEMD, a
decomposition algorithm is proposed in this work called Modified Bi-
dimensional Empirical Mode Decomposition (MBEMD). The proposed
MBEMD is based on the decomposition algorithm called Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEM-
DAN) [24]. The proposed MBEMD algorithm is explained as follows:

(i) The first mode, BIMF1 is obtained in the same way as in BEEMD.
The first IMF is given by:

BIMF, (m, n) ZBIMF' m,n) 9

where BIMF! (m, n) is the first mode obtained by adding ith realization
of white.

Gaussian noise to the input image.
(ii) The first residue is calculated as:

R, (m,n) =f(m,n) — BIMF,(m,n) (10)

C. (a
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(iii) Decompose the residue by adding I realizations of white noise w'
and the second mode is obtained as:

~|,_.

1
BIMF,(m, n) Z BIMF\[R, (m, n) + pw' (m, n)] a1

(iv) In equation (11) the noise amplitude f# is kept constant irre-
spective of the realization number. The subsequent residues and
BIMFs are obtained as given in equations (12) and (13)

respectively.
Ri(m,n) =R,_,(m,n) — BIMF;(m,n) 12)
BIMF(m, n) ZBIMF1 [Re_1(m, ) + pw' (m, n)] 13)

where k =1,2...K is the number of modes with i = 1,2...I, the

number of realizations. The step 4 is repeated until the residue is

monotonic and constant so that it cannot be decomposed further.

(v) The reconstructed image is obtained by adding all the modes and
the residue which is given by:

K

flm,n)= Emk(m, n) + R(m,n) 14
k=1

Equation (14) shows that MBEMD leads to complete decomposition

with no or negligible reconstruction error. Also, the mode mixing prob-

lem does not occur because of the better separation of the modes. Thus,

the number of sifting iterations is reduced, leading to less computational
complexity.

2.1.4. Performance comparison of EMD algorithms
The decomposition of the mammogram image into its BIMFs using
BEMD, BEEMD and the proposed MBEMD is shown in Fig. 2. Four modes
are obtained through BEMD and BEEMD: BIMF1, BIMF2, BIMF3 and
BIMF4. For MBEMD method of decomposition five modes are obtained.
The last two modes of MBEMD are added (BIMF4, BIMF5) and only
four modes are shown in Fig. 2. This is done to have a uniformity in the

@ O]

Fig. 2. Decomposition of DDSM image B_3101_1. RIGHT_CC into its BIMFs. A. Decomposition by BEMD B. Decomposition by BEEMD C. Decomposition by the
proposed MBEMD. (a) Input image (b) Mode 1: BIMF1 (c) Mode 2: BIMF 2 (d) Mode 3: BIMF3 (e) Mode 4: BIMF4.
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displayed images of BEMD, MBEMD modes in the figure. However, for
experimental analysis, all the modes are treated individually. Since the
sum of the BIMFs and the residue results in the original image, the res-
idue is defined as the last mode. The noise amplitude is selected as =
0.01 in our work. The number of realizations is restricted to I = 50
reduce the computational cost.

The performance of the decomposition algorithm is evaluated by the
parameters: (i) Orthogonality Index (ii) Peak Signal to Noise Ratio
(PSNR) (iii) Mean Square Error.

(i) Orthogonality Index (OI): The efficiency of the decomposed al-
gorithm is evaluated by the orthogonality of the decomposed
IMFs. The IMFs should be orthogonal to each other which shows
the completeness of the decomposition algorithm. The lower the
orthogonality, the lesser the amount of leakage between the IMFs.
The Orthogonality Index (OI) [22] is given for the image f(m,n)
as:

_ M N K+l K+l BIMF;(m, n)BIMF;(m, n)
-2 2 (S L ) -

m=1 n=1

where MxN is the size of the image with M rows and N columns.

BIMF;(m,n),BIMF;(m,n) with ij=1,2.. K are BIMFs and

BIMFy 1 (m, n) is the residue. Hence residue can be considered as last

mode.

(ii) Mean Square Error (MSE): It is defined as the average of the
square of the error between original image f(m,n) and the
reconstructed image f(m,n) with M rows and N Columns. The
reconstructed image is obtained by adding all BIMFs. MSE is given
by the following equation:

M N

1 - 2
MSE=+ > [ (myn) = f(myn)] (16)

m=1 n=1

(iii) Peak Signal to Noise Ratio (PSNR): PSNR of the image f(m,n)
refers to the ratio of maxthe imum value of intensity fjq, in an
image to its mean square error (MSE) value that is defined by:

_ f/n{u

a7

To evaluate the proposed MBEMD method, mammogram images from
MIAS, DDSM and MGM hospital are decomposed into BIMFs using BEMD
and the proposed MBEMD. For every image from each of these databases,
OI between IMFs, MSE and PSNR values of the reconstructed image are
computed for both BEMD and proposed MBEMD technique and the
average of OI, MSE and PSNR are given in Table 1. The efficiency of the
decomposition depends on OI which should be low. From Table 1, it is
seen that OI is high in BEMD and hence mode mixing problem is pre-
dominant. Also, MSE is less to show the completeness of BEMD algo-
rithm. In BEEMD method, the average OI is lesser than BEMD and hence
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the mode mixing problem is overcome. But, however, the average MSE is
high, which shows that the decomposition is incomplete resulting in low
PSNR. The singular disadvantages of mode mixing in BEMD and
incomplete decomposition in BEEMD are overcome in the proposed
decomposition algorithm MBEMD.

The quality of BIMFs is also affected by noise amplitude which is
added during the decomposition stage in BEEMD and MBEMD. When
noise amplitude is increased for a specific ensemble size, the recon-
struction error which is the difference between the input image and sum
of the BIMFs also increases. A complete empirical mode decomposition is
said to be attained, only if the reconstruction error is very less. If com-
plete decomposition is not achieved then the extracted features from the
incompletely decomposed BIMFs would fail to yield perfect texture fea-
tures. Hence an experiment is conducted by varying noise amplitude with
standard deviation ¢ between 0.001 and 0.1. We found that for the noise
amplitude with 6 =0.01, good quality BIMFs with acceptable MSE is
obtained. The effect of noise amplitude on MSE along with other per-
formance metrics is shown in Table 1. The results prove that the proposed
MBEMD algorithm is suitable for texture analysis. It is to be recalled that
in the BEMD algorithm no random noise is added.

2.1.5. Illustration of mode mixing problem

The main drawback of BEMD is mode mixing problem, a single BIMF
consists of signals of other modes or a single-mode present in more than
one BIMF. This results in overlapping of modes in distinct spatial fre-
quencies. Whereas, in the proposed MBEMD method, the mode mixing
problem is reduced and better spectral separation of modes is achieved.
This is because, at each of stage of MBEMD, a specific noise is added
leading to unique mode. The problem of mode mixing is well understood
by finding radially averaged power spectral density for every BIMF ob-
tained through BEMD/MBEMD which is illustrated in Fig. 3. From Fig. 3,
it reveals that in BEMD, the modes are overlapped in spatial frequencies,
leading to the mode mixing problem. The spectral mode separation in
MBEMD is better than in BEMD. Also, better mode alignment is achieved
at higher spatial frequencies for MBEMD modes. Hence, more distinct
features can be extracted from each of these modes, leading to better
mammogram mass classification.

2.2. Pre-processing

Pre-processing of mammogram images is the first step and must be
done to enhance the quality of the image to improve the classification
accuracy in the diagnosis of breast masses. In the pre-processing step,
image enhancement is performed based on Contrast Limited Adaptive
Histogram Equalization (CLAHE) followed by Gaussian smoothing.

2.2.1. CLAHE based enhancement

In CLAHE algorithm, the image is divided into non-overlapping re-
gions of equal sizes. These non-overlapping regions are called contextual
region. For each of these contextual regions, the histogram is calculated.
A predetermined threshold is set and the histogram of each of these re-
gions is modified so that its height does not exceed the threshold. The

Table 1
Performance comparison of Decomposition algorithms for mammogram images.
Decomposition Method Mammogram database 01 MSE PSNR
6 =0.005 c6=0.01 6=0.1
BEMD MIAS 0.1568 - - - 374.45
DDSM 0.0989 - - - 373.82
MGM Hospital 0.1326 - - - 374.23
BEEMD MIAS 0.0411 3.34E-08 4.99E-06 3.09 101.14
DDSM 0.0417 2.58E-07 4.98E-06 2.17 101.17
MGM Hospital 0.0658 3.01E-08 5.01E-06 2.65 101.13
Proposed MBEMD MIAS 0.019 2.12E-35 2.15E-34 3.47E-8 384.83
DDSM 0.02 2.17E-35 2.07E-34 2.16E-7 385.15
MGM Hospital 0.0387 1.92E-36 2.95E-34 2.56E-7 383.43
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Fig. 3. Illustration of mode mixing: (a) BEMD (b) MBEMD.

gray scale values are changed according to the modified histogram [25].

2.2.2. Gaussian smoothing

Low pass Gaussian filter is used to smoothen the image. The image
smoothing is performed in the frequency domain. The Fourier transform
of the image and that of the Gaussian filter is multiplied pixel by pixel. By
taking inverse Fourier transform of the resultant image, smoothing is
achieved [26]. Image enhancement based on CLAHE and Gaussian
smoothing are shown in Fig. 4.

2.3. ROI extraction

To implement the proposed feature extraction technique in
mammogram images, the ROI must be extracted from the entire image,
otherwise leads to undesirable results. There are two types of lesions in
mammograms: masses and microcalcifications. Detection and diagnosis
of masses is a challenging task because the shape and size of the masses
are instable. Also, some masses have poor contrast and are overlapped

with normal breast tissues. A low density, round or oval shape, well-
defined margin masses are generally categorized as benign, whereas
masses with high density, spiculated margin and ill-defined shape are
categorized as malignant [11]. In this work, ROI is the suspicious mass in
mammogram image that is extracted from the pre-processed image by
manual cropping.

2.4. The proposed method of feature extraction

In the proposed method, texture features are extracted using two EMD
techniques: (i) BEMD based feature extraction (ii) MBEMD based feature
extraction. BIMFs that are obtained after decomposing the ROI of
mammogram using BEMD and the proposed MBEMD method strongly
characterize the texture features of the mammogram image. For each of
these BIMFs, five GLCM features and seven GLRM features are extracted,
which are given as input to the classification stage to classify the ROI into
benign or malignant. The classifiers employed in this work are SVM and
LDA classifiers. In our work, we have not implemented BEEMD for
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feature extraction because the decomposition in BEEMD is not complete.

2.4.1. BEMD based feature extraction

The ROI of the mammogram image is decomposed into its BIMFs
using BEMD method of decomposition. These BIMFs are called modes.
Four modes are obtained by applying BEMD on ROI of mammogram
image. Fig. 5 shows the BIMFs extracted from ROIs of mammogram
images using BEMD technique. After the decomposition of mass ROI into
its BIMFs or modes, texture features are to be extracted from each of these
BIMFs. Texture features have the information about a region’s structural
arrangement in an image and the relationship between the adjacent or
sounding regions. The extracted features can be used for the classification
of suspicious ROI into benign or malignant.

In this work, combined GLCM and GLRLM based features [15] are
extracted from BIMFs of mammogram ROI. The texture analysis of im-
ages was based on first order or second-order statistics of textures. Even
though many techniques like Gabor filter, Fractals, Wavelet transform
have been used for texture analysis, the most efficient technique is Gray
Level Co-Occurrence Matrix (GLCM) based features. GLCM is a 2-D ma-
trix which identifies specific texture in an image by modeling texture as
gray level variation. GLCM was based on second-order statistics of tex-
tures of the image. The elements in the GLCM array correspond to the
frequencies of variation of pixel intensity in an image. Haralick RM et al.
[27] extracted 14 features from GLCM. Out of these, five common fea-
tures Energy, Contrast, Entropy, Maximum Probability (Max. Prob) and
Inverse Difference moment (Inv. Diff) have been used in this work.

Gray Level Run Length Matrix (GLRLM) is a 2-D array whose elements
corresponds to the number of adjacent pixels with the same intensity in a
particular direction. GLRLM is given by f(i,j|6), where each element j in
the matrix is the number of times, intensity i occurs in the image in a
particular direction 6. Seven texture features are extracted from this
matrix. The seven texture features are Short Run Emphasis (SRE), Long
Run Emphasis (LRE), Gray Level Non-uniformity (GLN), Run Percent
(RP), Run Length Non-uniformity (RLN), Low Gray level Run Emphasis
(LGRE) and High Gray level Run Emphasis (HGRE) [15]. The combined
12 features of GLCM and GLRLM are obtained from the extracted BIMFs
of the ROI of mammogram image.

2.4.2. MBEMD based feature extraction

By investigating Fig. 5, it is clear that every mode of each of the ROI
shows different texture. However, in BEMD some frequency components
of a particular scale are available at other scales which is called mode
mixing. Hence texture information of a particular mode is available in
other modes, leading to high OI between the modes. The GLCM, GLRLM
features extracted from the mode mixed BIMFs of the RO, has a great
impact on the diagnostic accuracy in the classification of masses and it is
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(b)

Fig. 4. Image Enhancement (a) Input MIAS image mdb015 (b) Enhanced image after CLAHE and Gaussian smoothing.

shown in experimental results. To overcome this problem, the features
are extracted from the BIMFs obtained by applying the proposed MBEMD
technique on mammogram ROI. The BIMFs extracted from ROIs of
mammogram images using MBEMD technique is shown in Fig. 6. Similar
to BEMD based feature extraction, 12 combined features from GLCM and
GLRLM are obtained and these features are given as input to the classifier
for the classification into benign or malignant.

2.4.3. Performance evaluation of BEMD and the proposed MBEMD based
feature extraction

In the proposed method of feature extraction, the ROI is decomposed
into its BIMFs using BEMD and the proposed MBEMD techniques. The
GLCM-GLRLM feature values from each of these BIMFs are obtained.
From the MIAS database, 92 ROIs consisting of both benign and malig-
nant masses are decomposed using BEMD and the proposed MBEMD. The
combined twelve features from GLCM-GLRLM are extracted from each of
the modes (BIMFs) obtained by decomposing the mammogram ROIs.
Similarly, GLCM-GLRLM features are extracted from 120 ROIs of the
DDSM database and 88 ROIs of MGM hospital database.

In order to verify the class discrimination of the extracted features,
Kruskal-Wallis statistical test has been implemented on BEMD/MBEMD
features of randomly selected mammogram ROIs. These ROIs consist of
both benign and malignant masses. Fig. 7-10 shows the results of a sta-
tistical test applied for BIMF1 (mode 1) of BEMD and the proposed
MBEMD based feature extraction for the MIAS database. Out of twelve
features extracted from BIMFs, the most significant features are shown in
these figures. The GLCM-contrast feature distribution for BEMD and
MBEMD are (benign: 0.5-1.5, malignant:1.5-2.9), (benign:0.7-2.2,
malignant:0.1-0.2) respectively. Similarly, the feature distribution for
GLCM-Energy, GLRLM-GLN, GLRLM-HGRE are shown in Figs. 7-10. It is
seen from the figures that MBEMD based features have distinct feature
measures of Energy, Contrast, GLN and HGRE for benign and malignant
ROIs, whereas BEMD based features are overlapped for benign and ma-
lignant ROIs. In specific, GLRLM-GLN feature distribution of BEMD for
benign is 2.5-3 and for malignant is 0.05-4.5, which are completely
overlapped resulting in poor class discrimination. This shows that
MBEMD based feature extraction has distinguished significance of
discrimination between benign and malignant classes.

2.5. Mass classification

The extracted features from the decomposed ROIs of mammogram
images are given as input to the classifier to classify the suspicious ROIs
into benign or malignant. SVM and LDA classifiers are used for mass
classification in this work.
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Fig. 5. BIMFs extracted from ROIs of mammogram images using BEMD method. The first column shows input ROIs. The next successive columns show BIMFs
extracted from the corresponding ROIs. A. MIAS image mdb170. B. MIAS image mdb032. C. DDSM image B_3101_1. RIGHT_CC D. DDSM image C_0001_1.RIGHT_CC.
E, MGM hospital images. A, C, E are benign masses and B, D, F are malignant masses.

2.5.1. SVM classifier

The Support Vector Machine (SVM) Classifier is based on statistical
learning theory. SVM is used for classification in applications that do not
need a large training data set. Linear discrimination is achieved in SVM,
in which a hyperplane is calculated to separate the feature samples into
different classes. The hyperplane is calculated in such a way that the
distance between the marginal feature samples of data of each class is
maximized. Thus, the optimization problem consists of (i) finding hy-
perplane for separation of samples into classes. (ii) Maximizing the dis-
tance between the marginal feature samples of each class. The solution to
this optimization problem is provided by the small percentage of mar-
ginal samples called Support Vectors. The distance of a feature sample

from the hyperplane is given by the decision function:
F)=b+ Z“i)’iK(xi,x) ;v €01] (29
i=1

wherei = 1,2, ...n are the multipliers which are non-zero for the support
vectors, b is a bias value, « is a weight vector, K (x;, x) is a kernel function
[28] and x; is the input feature vector. In this work.

2.5.2. LDA classifier
In LDA, optimal transform is found by minimizing the distance of
within-class sample features and maximizing the distance of between-
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Fig. 6. BIMFs extracted from ROIs of mammogram images using the Proposed MBEMD method. The first column shows input ROIs. The next successive columns show
BIMFs extracted from the corresponding ROIs. A. MIAS image mdb170. B. MIAS image mdb032. C. DDSM image B_3101_1. RIGHT_CC D. DDSM image
C_0001_1.RIGHT_CC. E, MGM hospital images. A, C, E are benign masses and B, D, F are malignant masses.

class sample features simultaneously. LDA is based on the concept of
looking for a linear combination of input variables or predictors that can
provide the best separation between the classes (targets) [29].

3. Experimental results
The proposed feature extraction method is evaluated on the

mammogram images collected from MIAS database, DDSM database and
local database (MGM hospital images). The entire mammogram ROIs are

divided into two non-overlapping data set for training and testing.
Table 2 gives the details of the ROIs used for training and testing. The
classification results of MGM hospital images were verified by the
radiologist.

3.1. Parameterization of classifier

In SVM, determination of hyperplane and maximization of the dis-
tance between each class marginal features are given by:
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Fig. 7. GLCM - Contrast feature value distribution for Benign (0) and Malignant (1) masses obtained by BEMD and MBEMD based Feature extraction method.
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Fig. 8. GLCM - Energy feature value distribution for Benign (0) and Malignant (1) masses obtained by BEMD and MBEMD based Feature extraction method.
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mmia,a+C Zfi+c ZT,- (30)

whr ie+ i€—
subject to y;(a, @(x); + b) > 1 — ;7 > 0; where. K(x,x') = @(x) @ (x)

The mapping function @(x) is used to project the data in order to
obtain the non-linear decision boundaries. In order to perform classifi-
cation for the given test sets, parameters of the classifier have to be
determined. In LDA, all required parameters were estimated from the
training set and hence LDA is applied directly for the test sets. In SVM, if
the feature vectors are inseparable, then the penalty term C, with C* for
the negative class and C~ for the positive class is used to control the
misclassification errors during training and the kernel ‘c’, controls the
effect of support vectors on decision boundary. In our work, we have
taken C* € {1,10,25,75,100} and C~ := 1. The Gaussian kernel width
is chosen as o€ {0,0.25, 0.5, 0.75}. During cross-validation, optimum
results are obtained for parameters C* =10 and 6 = 0.5.

A feature vector is constructed by computing twelve GLCM-GLRLM

10

features from each of the BIMFs obtained by decomposing ROIs using
BEMD and the proposed MBEMD methods. This feature vector is given as
input to SVM and LDA classifiers for classification. The metrics used for
evaluating the classification performance are (i) Accuracy (ii) AUC of
ROC. Accuracy is defined as the ratio of the number of ROIs classified
correctly to the total number of ROIs available in mammogram ROIs.
ROC is the plot of True Positive Rate (TPR) drawn as the function of False
Positive Rate (FPR).

After performing ten folds of cross validation, the average accuracy
and AUC of SVM classifier to classify the ROIs into benign and malignant
is given in Table 3 and that of LDA classifier is shown in Table 4. From
Tables 3 and 4 it is seen that classification accuracy of BIMF1 features is
high compared to other BIMFs. This is because the edge information is
present in lower modes which correspond to higher spatial frequencies.
Also, the highest classification accuracy of MBEMD based features have
been achieved with AUC closer to 1.

From Table 3 and 4 it is seen that the performance of SVM is better
than LDA due to the choice of penalty parameters that can be changed
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Fig. 9. GLRLM-GLN feature value distribution for Benign (0) and Malignant (1) masses obtained by BEMD and MBEMD based Feature extraction method.
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Table 2
ROIs with masses used for the evaluation of proposed feature extraction.

Database Abnormality Total No. of  No. of Training  No. of Testing
Type ROIs Sets Sets
MIAS Benign 53 38 15
Malignant 39 27 12
DDSM Benign 60 45 15
Malignant 60 45 15
MGM Benign 59 40 19
Hospital Malignant 29 18 11

when misclassification error occurs. SVM classifier shows superior per-
formance for both BEMD and MBEMD features, than LDA classifier.
The ROC curves obtained with SVM and LDA classifiers for BIMF1

features of MIAS database is shown in Fig. 11. The more the ROC curve
touches the upper right panel, the better the classification accuracy.
Hence, it is clear that the proposed MBEMD based feature extraction
method with SVM classifier achieves highest accuracy. Similarly, the
ROC curves for the DDSM database and MGM hospital database are ob-
tained and are shown in Figs. 12 and 13 respectively. It is seen that
irrespective of mammogram database, the proposed MBEMD based
feature extraction method performs better than the BEMD based feature
extraction technique. Also, the mass classification results show that the
performance of SVM classifier is better than LDA classifier.

The performance comparison between SVM and LDA classifiers with
BEMD and proposed MBEMD features for MIAS, DDSM and MGM hos-
pital database in terms of accuracy is shown in Fig. 14. It is seen that the
classification accuracy is achieved higher with SVM classifier than with
LDA classifier.
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Table 3
Performance Evaluation of Proposed Feature Extraction method with SVM
classifier.
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3.2. Comparison with other methods

The performance of the proposed method is compared with other

Feature BIMFs  Performance MIAS DDSM MGM state-of-the-art methods in the literature in terms of average accuracy
Extraction Metrics Hospital and AUC of ROC. The dataset and the number of ROIs used for the pro-
Method posed method is different from those used by the other methods. Hence a
BEMD based BIMF1  Accuracy 88.88%  90% 86.66% fair comparison is made by compiling information from other methods in
Features AUC 0.9 0.90 0.856 the literature and is given in Table 5. The comparison results in this table
0, 0, 0, . . .
BIMF2  Accuracy 81.48%  83.33%  83.3% convey that the proposed feature extraction method is robust. This means
AUC 0.816 0.83 0.83 hat th 1 verf £ th is relativel . h
BIMF3  Accuracy 81.48%  83.33 20% that .t e overall performance of the system is relatively consistent when
AUC 0.825 0.83 0.842 applied across different databases. Even though some other existing
BIMF4  Accuracy 74.07%  76% 73.3% feature extraction methods given in Table 5 yield superior results, the
AUC 0741 076 0.77 consistency in the performance by testing with different databases is not
Proposed BIMF1  Accuracy 96.2%  93.33%  90% shown which is essential for any CAD system
MBEMD based AUC 0.966 0.933 0.92 y Y ’ .
Features BIMF2  Accuracy 85% 86.6%  83.3% Even though there are many modern methods such as deep learning
AUC 0.858 0.866 0.83 networks are available for mammogram mass classification, these base
BIMF3  Accuracy 81.48%  83.33%  76% line methods are not used in this work for the following reasons:
AUC 0.825 0.833 0.758
BIMF4  Accuracy 81.48%  80% 73.3% DA . f£d . ired . d 1 .
AUC 0.816 0.8 0712 (i) A massive am'ount of data is required to train a deep earning
network. In this work, we have shown that the proposed method is
efficient when applied across different databases with less volume
of data set [30-32].
Table 4 i) Traini c[l 1] . K is ti . hich tak
Performance Evaluation of Proposed Feature Extraction method with LDA (ii) Training a deep earplng network 1s .tlme consu.mmg W ich takes
classifier. days or weeks even if modern Graphics Processing Units are used
for this. Whereas, our work is less time consuming and can be been
Feature BIMFs Performance MIAS DDSM MGM . . . . .
E . . . implemented in any available Central Processing Units [33-36].
xtraction Metrics Hospital i, K A
Method (iii) The deep learning network such as convolutional neural network
1d not provide better classification if th inin ize i
BEMD based BIMF1  Accuracy 88.8% 86.6%  83.3% could not provide better classification if the training data size is
Features AUC 0.89 0.866  0.83 small [30-32,37,38].
BIMF2  Accuracy 88.8% 86.6%  83.33%
AUC 0.89 0.86 0.81 In our work, we have implemented hand-crafted features based on
BIMF3  Accuracy 77.7% - 76.6%  73.33% BEMD and MBEMD and achieved with optimum results.
AUC 0.775 0.76 0.732
BIMF4  Accuracy 70.37% 66.6%  70% .
AUC 0.7 0.66 0.75 4. Conclusion
Proposed MBEMD BIMF1 Accuracy 92.59% 90% 90%
based Features AUC 0.933 0.9 0.9 In this paper, two feature extraction methods based on BEMD and the
0, 0, 0/ .. e .
BIMF2  Accuracy 85.18%  86.6%  86.6% proposed decomposition method called MBEMD for the classification of
AUC 0.85 0.866  0.875 . . Th lts sh h
BIMFS  Accuracy 81.48%  76.6%  73.3% masses in mammogram images are presented. The results show that the
AUC 0.825 0.766  0.693 proposed method has several advantages over other state-of-the-art-
BIMF4  Accuracy 74.07%  70% 70% methods: first, BEMD or MBEMD does not require any basis function
AUC 0741 07 0.667 and it is completely data-driven. which differs from transform based
feature extraction methods. The results show that decomposition in the
proposed MBEMD method is complete and the extracted modes are
orthogonal to each other. Hence different texture features are extracted
T T T T T T 7
2
< -
x
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s =]
8
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. 11. Comparison of the ROC curves between BEMD and the proposed MBEMD features with SVM and LDA classifiers for MIAS database.
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Table 5
Comparison of the proposed feature extraction with other existing methods.

Feature Extraction = Database No.of  Average AUC

Methods ROIs Accuracy in %

Contourlet MIAS 90 87.00 + 0.008 -
transform [17]

Gabor wavelets MIAS 114 78.26 0.78
[16]

Geometry and DDSM 826 94 0.9615
texture features
[13]

Gabor filters [12] DDSM 512 93.95+3.85 0.948 £0.043

Structural MIAS 58 94.57 0.98
similarity DDSM 500 85.42 0.93
mapping [11]

Proposed MIAS 92 96.2 0.966
MBEMD DDSM 120 93.33 0.93
method MGM (Local 88 90 0.92

Hospital)

in each mode and hidden textures are identified better than in BEMD
method which makes it suitable for texture analysis. Second, the accuracy
in classifying between benign and malignant masses is higher in the
proposed method than other existing methods. Third, class discrimina-
tion is achieved with a minimum feature set, thus feature selection is not
necessary for this method. The main significance of the proposed system
is that the performance of the proposed feature extraction method is
consistent when applied for different databases. In this paper, masses in
mammograms are classified into benign or malignant. The other type of
lesion, microcalcification is not considered in this work. Classification of
both masses and microcalcification in mammograms is the next objective
of our future research work.
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